

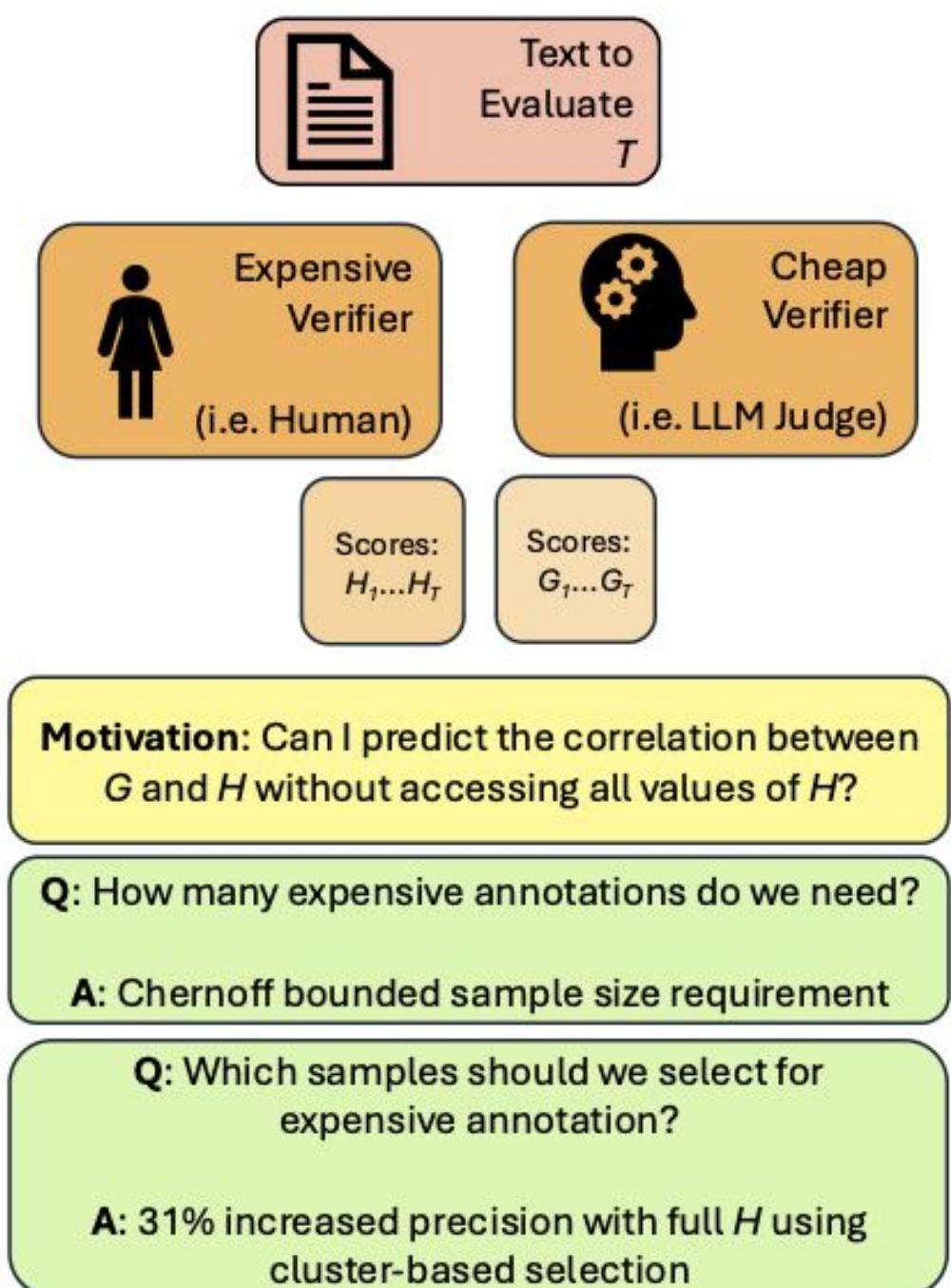


# Smarter Sampling for LLM Judges: Reliable Evaluation on a Budget



Alyssa Unell\*, Natalie Dullerud\*, Nigam Shah, Sanmi Koyejo

## Background



- LLM-as-a-judge offers options for scalable AI evaluation but reliability depends on human alignment.
- Expert annotation is costly, especially in specialized domains.
- We establish a lower bound on the number of annotations needed to accurately measure reliability.
- We present an initial panel of annotation sampling methods.

## Methods

### Measurement of reliability: Intraclass correlation coefficient (ICC)

In order to quantify reliability of LLM scores relative to human annotations, we rely on intraclass correlation coefficient. Under random effects model,

$$X_{ij} = \mu + \alpha_i + c_j + \epsilon_{ij}$$

$X_{ij}$  : rating  $j$  (LLM or human) on text  $i$

$\mu$  : population mean

$\alpha_i$  : random effect on all ratings on text  $i$

$c_j$  : random effect on all texts from rater  $j$

$\epsilon_{ij}$  : random noise term

All the random effect terms are assumed unobserved. Thus, population ICC defined as:

$$\rho = \frac{\sigma_\alpha^2}{\sigma_\alpha^2 + \sigma_\epsilon^2}$$

We estimate ICC as:

$$\hat{\rho} = \frac{MS_R - MS_E}{MS_R}$$

$MS_R$ : mean square error over rows (text)

$MS_E$ : residual mean square error

### Suite of sampling Methods derived from active testing & learning

Given dataset  $\mathcal{X}$  of size  $n$ , (observed) cheap labels  $G$  and (unobserved) human labels  $H$ , and a budget  $b < n$ , we seek a subset  $S^*$ ,  $|S^*| = b$ , such that the ICC estimand on  $S^*$ ,  $\hat{\rho}_b$ , closely approximates the ICC estimand on  $\mathcal{X}$ ,  $\hat{\rho}_n$  ( $\approx \rho$ )

$$S^* = \arg \min_{S \subseteq \mathcal{X}, |S|=b} |\hat{\rho}_b(H_S, G_S) - \hat{\rho}_n(H, G)|$$

## Methods (Cont.)

The following sampling strategies are investigated:

- Random  $S_{\text{rand}} = \text{UniformSample}(\mathcal{N}, k)$
- Stratified  $S_{\text{strat}} = \bigcup_{j=1}^k \text{UniformSample}(\text{Stratum}_j, 1)$
- QBC  $S_{\text{QBC}} = \arg \max_{|S|=k} \sum_{i \in S} |g_i^{(1)} - g_i^{(2)}|$
- Stratified QBC  $S_{\text{sQBC}} = S_{\text{strat}}^{(k/2)} \cup S_{\text{QBC}}^{(k/2)}$
- Cluster  $S_{\text{clust}} = \{\arg \min_{i \in C_j} |g_i - c_j|\}_{j=1}^k$
- Maximum-variation  $S_{t+1} = S_t \cup \{\arg \max_{i \notin S_t} \dots\}$
- Density-based  $S_{\text{dens}} = S_{\text{high}} \cup S_{\text{low}}$

## Theoretical Results

### Chernoff Bound for ICC

Given  $H, G$ , random variables s.t.  $H_i, G_i \sim \mathcal{N}(\mu, \Sigma)$  i.i.d. Let  $\rho$  denote the population ICC,  $\hat{\rho}_n$  denote the estimated ICC on sample size  $n$ . Given  $\varepsilon > 0$ ,  $n$  sufficiently large for CLT and  $|\rho|$  not close to 1,

$$\Pr[|\hat{\rho}_n - \rho| \geq \varepsilon] \lesssim 2 \exp \left( - \frac{(n-1)\varepsilon^2}{2(1-\rho^2)^2} \right)$$

Therefore, given  $\delta > 0$ , with probability  $1 - \delta$ , the population and estimated ICC are guaranteed to be  $\varepsilon$  - close if

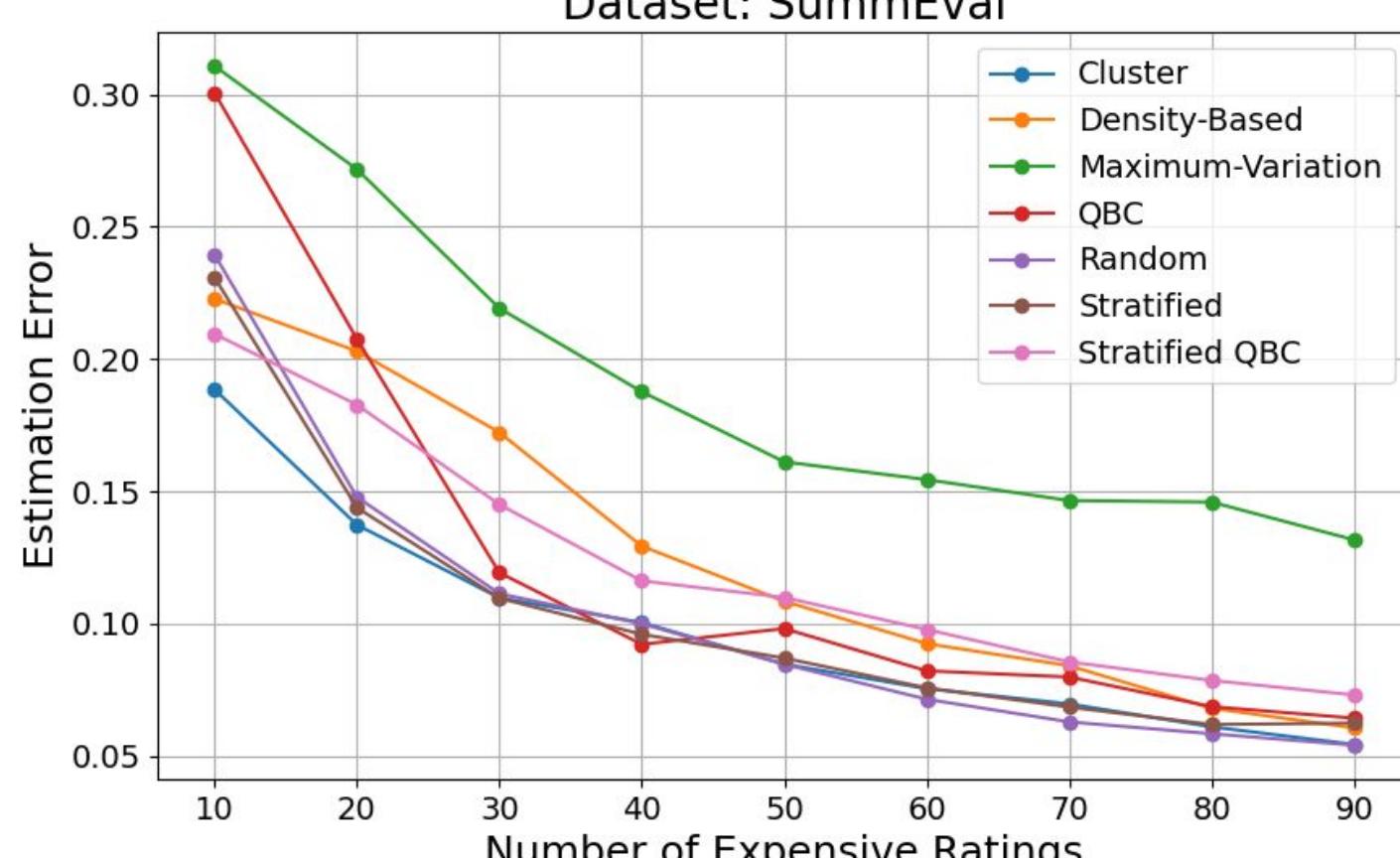
$$n \gtrsim 1 + \frac{2(1-\rho^2)^2}{\varepsilon^2} \log \left( \frac{2}{\delta} \right)$$

## Empirical Results

### Panel of Sampling Methods: Results

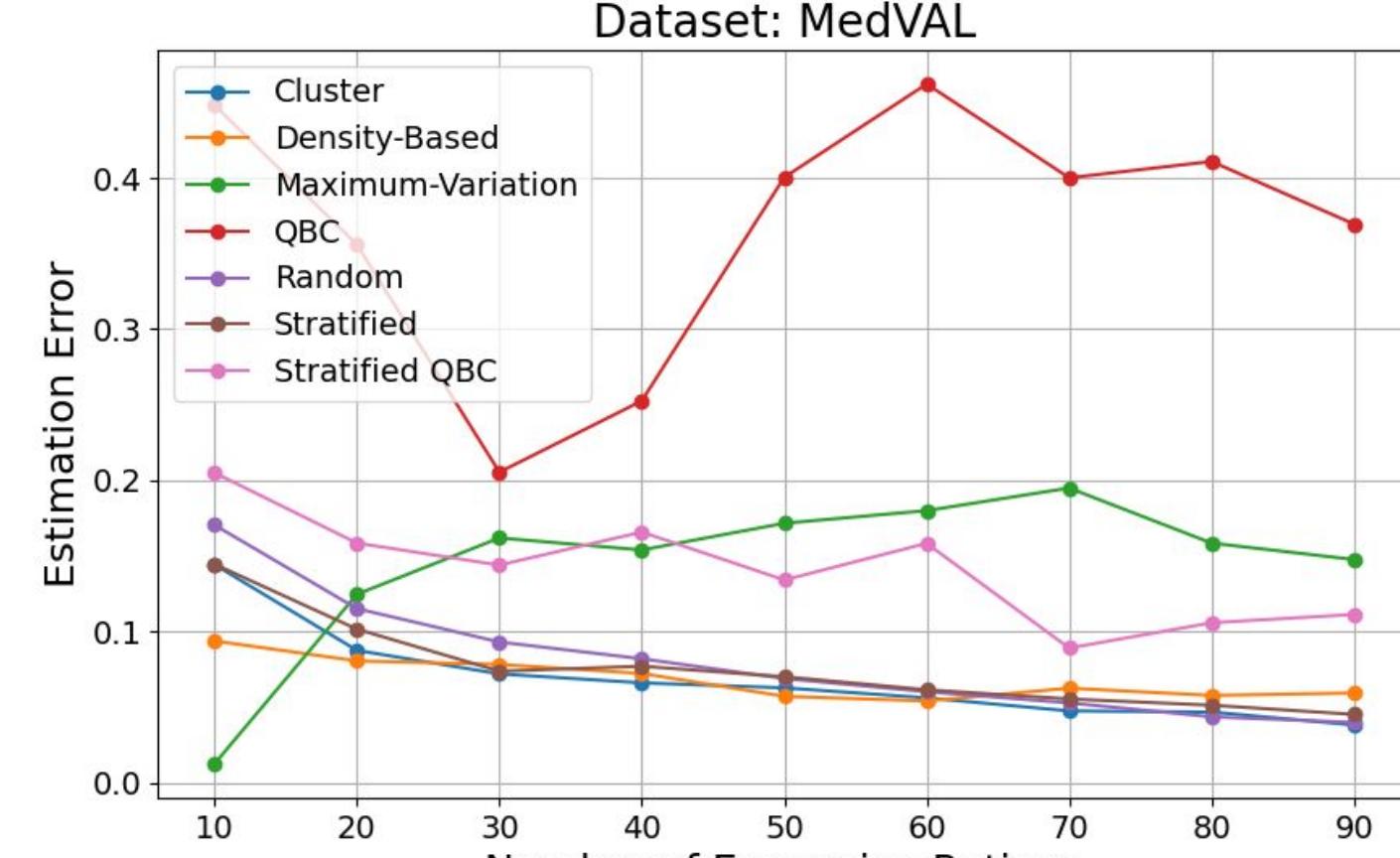
#### SummEval

Estimation Error vs Number of Expensive Ratings Dataset: SummEval



#### MedVAL

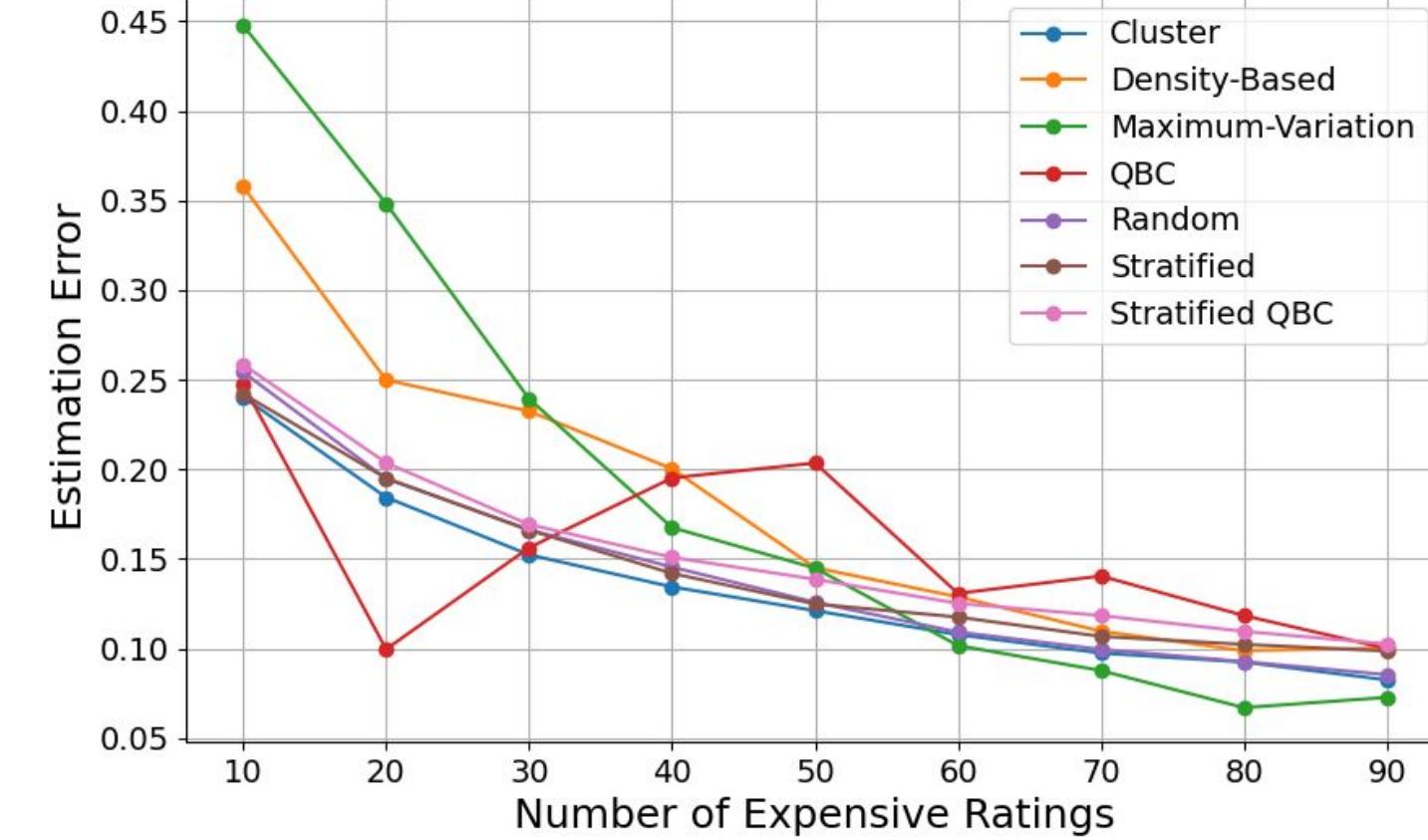
Estimation Error vs Number of Expensive Ratings Dataset: MedVAL



## Empirical Results

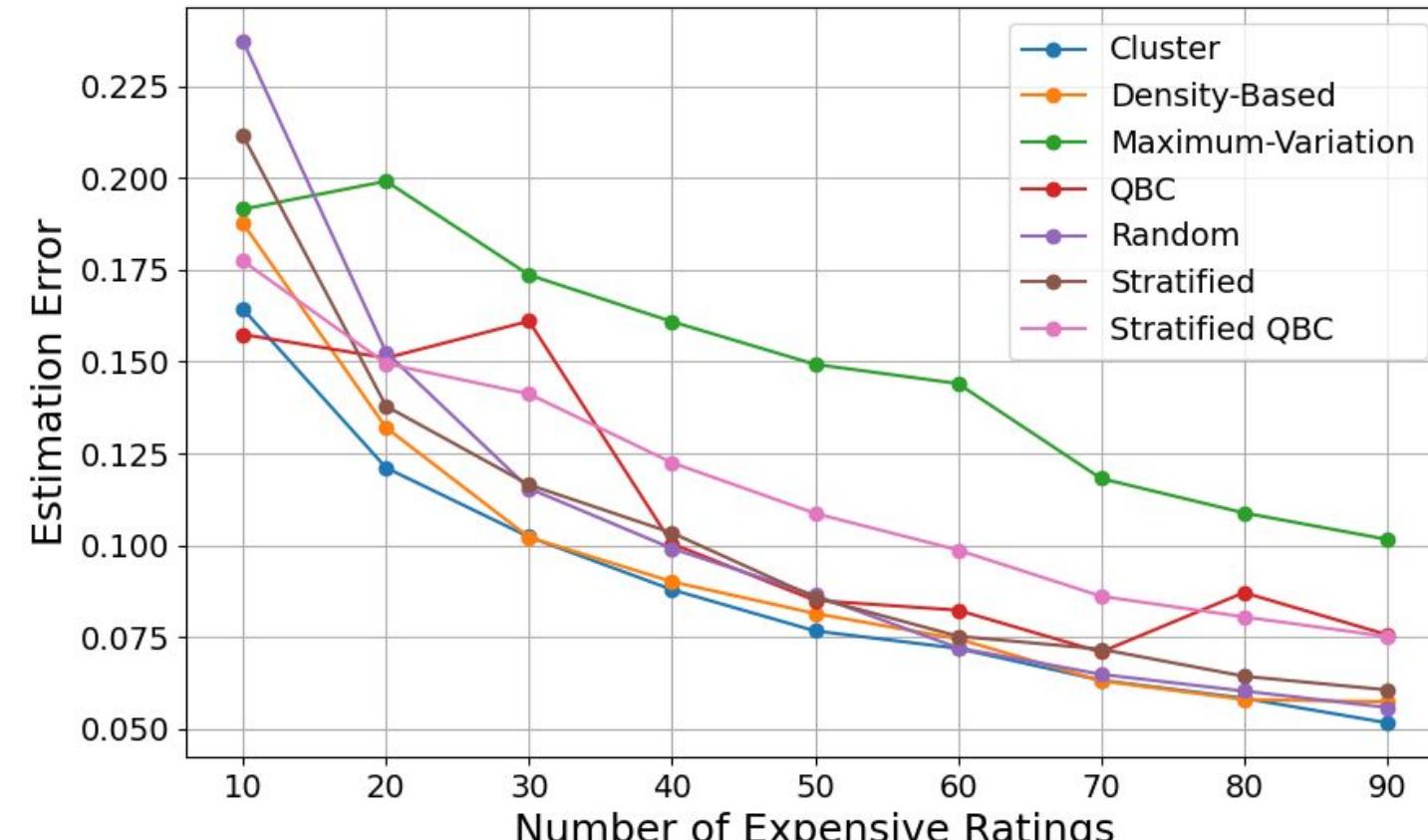
### MSLR

Estimation Error vs Number of Expensive Ratings Dataset: MSLR



### HANNA

Estimation Error vs Number of Expensive Ratings Dataset: HANNA



### Best Sampling Method: Cluster

| nexpensive | Mean ICC Improvement over Random (%) |        |      |          |
|------------|--------------------------------------|--------|------|----------|
|            | HANNA                                | MedVAL | MSLR | SummEval |
| 10         | 31.0%                                | 15.0%  | 5.5% | 21.0%    |
| 20         | 21.0%                                | 24.0%  | 5.4% | 7.1%     |
| 30         | 11.0%                                | 23.0%  | 8.4% | 1.4%     |
| 40         | 11.0%                                | 20.0%  | 7.6% | 0.0%     |
| 50         | 11.0%                                | 9.0%   | 3.7% | 0.0%     |
| 60         | 0.0%                                 | 6.8%   | 1.3% | -5.6%    |
| 70         | 2.5%                                 | 10.0%  | 2.0% | -11.0%   |
| 80         | 3.2%                                 | -7.1%  | 0.0% | -4.4%    |
| 90         | 7.5%                                 | 4.2%   | 3.4% | 0.0%     |

| nexpensive | CI Width Improvement of Cluster over Random (%) |        |       |          |
|------------|-------------------------------------------------|--------|-------|----------|
|            | HANNA                                           | MedVAL | MSLR  | SummEval |
| 10         | 6.4%                                            | 32.4%  | -0.9% | 24.1%    |
| 20         | 7.8%                                            | 18.3%  | 0.1%  | 21.9%    |
| 30         | 7.1%                                            | 13.9%  | -2.4% | 18.4%    |
| 40         | 2.6%                                            | 9.7%   | -1.0% | 14.6%    |
| 50         | 4.9%                                            | 9.4%   | -0.7% | 14.0%    |
| 60         | 2.9%                                            | 2.1%   | 0.0%  | 11.3%    |
| 70         | 3.5%                                            | 8.0%   | -0.4% | 9.1%     |
| 80         | 1.5%                                            | 5.9%   | 0.0%  | 7.8%     |
| 90         | 1.8%                                            | 4.5%   | -1.3% | 6.2%     |

**Table 1.** Cluster-based sampling can decrease estimation error and improve confidence intervals in low data settings.

## Discussion

- Our **Chernoff bound for ICC** relies on assumption of *normality* of samples, and *sufficient samples* for CLT s.t. distribution of ICC approaches normality. We provide tighter bounds than previous work in most parameter setting – future work could remove assumptions.
- Our **cluster-based sampling approach** can improve ICC estimation at low budget settings by up to 31%. Future work could explore further algorithm adjustments to improve generalizability and gain.